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Dark Matter Science Drivers

1
DM Science cuts across technologies ; Mp
-+ Inflation
We are looking for something we know is there, but -
because we do not know what its particle properties 1
are, we need to cast the net wide. Models tend to i
direct our technology choices. :
Promising candidates: WIMPs and Axions, 1
but other possibilities cannot be neglected 1
+ TeV
Characterized by breadth of technique |
and Complementarity B WIMP
+ | freeze-out
Direct and Indirect Detection, Collider Production LT
—MeV=>BBN
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Relevant Presentations

Matt Pyle plenary: Theory and Detector Design Drivers
Bhaskar Dutta: Dark Matter — Direct, Indirect, Colliders
Oliver Buchmueller — Dark Matter at the LHC

Eric Charles — Indirect Detection of Dark Matter

Louis Strigari — Neutrinos in Dark Matter Detectors

Joint Session: Dark Matter and Exploring the Unknown
G. Carosi — Future of Axion Searches
Jeremy Mardon — Future of Dark Sector Searches
Surjeet Rajendran — Ultra-light Dark Matter

This summary talk can’t do justice to the full scope and

needs of the dark matter science. The detailed report will!
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Direct Detection of WIMP dark Matter

m The neutrino floor represents a goal for the G2 and G3 experiments

= G2 = Some complementarity of targets between 1 — 1000 GeV/c?
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Findings:

to probe interaction physics

Need Complementarity of Targets if we want

Future prospects for distinguishing models

V. Glusevic, M. Gresham, S.D. McDermott, A.H.G. Peter, and K. Zurek, arXiv:1506.04454
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Simulated over 8000 recoil energy spectra for various models




Exclusion limits for |soscalar EFT operator 03 10° Exclu5|on limits for |soscal ar EFT operator Oa
= SuperCDMS Soudan | o =

SuperCDMS Soudan N

— CDMS I Ge E — CDMS Il Ge
10° — CDMS I Si . 10° — CDMS I Si '
— Lux ] — Lux §

4
woak

(c3)° *m

T l"l T llll T l"l T lll' T llll T ”ll T llll LILAL

WIMP mass [GeV/c?] WIMP mass [GeV/c?]
10 . , ’ , , 10
— — 1’
= 0.100} 5
x S 0.100}
‘E: — Xe E — Xe
uf 0.001} . u 0.010} :
> 7 %0001 -t
S 109 — e —
o Q 10—4,
10—7 . . . . . 10—5 . . . . .
0 20 40 60 80 100 0 20 40 60 80 100
Eg[keV] EglkeV]
3 q L O S, - (S 4
L] _’ .
) (= x U) 9 ? N X

A complementary choice of nuclear targets can provide
important discriminating information



Going Beyond the Neutrino Floor in G3 Experiments

Precision measurement of CNS would provide ability to do statistical
subtraction — solar neutrino most feasible in the next decade
Spectroscpic differences in recoil spectrum? Annual modulation?
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Can neutrinos mimic the WIMP signal?
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Going beyond the neutrino background: Non-relativistic EFT
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FIG. 3. Sample max likelihood rates fit to the atmospheric neutrino rate in xenon (left) and

germanium (right)

Dent, Dutta, Newstead, and Strigari to appear



Going beyond neutrino background:
Directional detection
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Going beyond the neutrino background: Annual modulation

Annual modulation of
WIMP signhal due to orbit
of Earth around Sun

Solar neutrino flux
varies by a few % per
year due to eccentricity
of the Earth’ s orbit
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Indirect Detection of WIMP dark Matter

What we observe are stable final-state annihilation products
» Charged particles (e*,e",p,anti-p) diffuse in the Galactic magnetic field
» Neutral particles (y, v) travel directly to us \

. 7 Gamma-rays
)
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Findings: Many strategies. 13
Go where the WIMPs concentrate

' Galactic Center :
Satellites o Bae e Milky Way Halo
, but source T )
Low background and good o0 -s 2 |s.; es Large statistics, but diffuse
source id, but low statistics confusion/diffuse background

background

Spectral Lines
Little or no astrophysical uncertainties, good

Dark Matter simulation:

source id, but low sensitivity because of
Galaxy Clusters Pieri+(2009) arXiv:0908.0195

expected small branching ratio Low background, but low statistics

CPAD Workshop, October 7, D®15



Healthy program of ground-based and space-
based detectors, multi-messenger approach
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Pair-conversion telescopes: Cosmic-ray detectors:
Fermi, AGILE, PAMELA, AMS-02,

Hybrid cosmic-ray detectors:
Auger

Imaging Atmospheric
Cherenkov Telescopes:
HESS, MAGIC, VERITAS,

Telescopes:

CTA

Water Cherenkov



Findings:

= Limits from many experiments are now very sensitive

= DM hints often have conventional explanations.

w Astrophysics is necessary to understand backgrounds and to interpret
enhancements.
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Driving Factors in Instrument Development

In both cases we are pushed toward modifying well-established technology "g
ze scientific return.

m Space-based. performance constrained by mass (~< 10000 kg), power
budget (~< 3kW), bandwidth (~< 10 MHz averaged). Must survive launch
(vibrational / acoustic noise), space radiation environment.

m Ground-based: performance constrained by light collection area, array size
and in-fill factor, (air-showers arrays: night-sky brightness)



Non-WIMP dark matter: Types of bosons

Naturalness. Structure set by symmetries.

"4 N

Spin 0 Spin 1
Axions or ultra weak
coupling Anomaly free
Many UV theories Standard Model couplings
N N
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Axions from DM, Sun, relic ALPs, lasers

m Solve strong-CP problem and are a compelling DM candidate

= Microwave Cavities (dark matter source)
* Low noise amplifiers (ADMX) and Rubidium Atoms (CARRACK)

—Look for dark matter axions (low mass) converting to photons in B-Field
—Relies on a dense source of primordial axions

= Solar Observatories (solar source)
* X-Ray (CAST) and Germanium detectors

—Look for axions generated from the sun
—Higher coupling required than for DM axions.

= Lab experiments (laser source)

* Photon regeneration and polarization changes (PVLAS)
—Look for production of axions from light passing through B-field

—Higher coupling required. e t
—Ultralight axions (nano-eV) % gy Qe\y;;;;:
(NMR / LC Circuit) % . 2

L




The Importance of Low Noise Temperature

* Original system noise temperature: I, =T+Ty=32K
Cavity temperature: I'=15K (pumped “He)
Amplifier noise temperature: Iy=17K (HEMT)

Time* to scan the frequency range from f, = 0.5 to f, = 1 GHz:

7(f1,/,) = 4 x 1017(3.2K/1 K)?(1/f; — 1/f,) sec = 130 years

Next generation:
Cavity temperature: T =100 mK (°He dilution unit)
Amplifier noise temperature: Iy=50mK (MSA)

Time™* to scan the frequency range from f, = 0.5 to f, = 1 GHz:
w7, [, = 4 x 1017(0.15K/1 K)X(1/f, — 1/£;) sec = 104 days

Ty T _ e e
S. O'Kelley April 2014 Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) theory



CASPEr

Axion affects physics of nucleus,
NMR 15 sensitive probe
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Larmor frequency = axion mass = resonant enhancement

SQUID measures resulting transverse magnetization
NMR well established technology, noise understood, similar setup to previous experiments

Example materials: LXe, ferroelectric PbTiO3, many others



CMSSM: Evolution with time M7 e
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LHC, Direct, Indirect, DM content

=f (B W,H H )
Wino Higgsino Bino  Higgsino-Bino
Indirect good good ok good/ok
LHC good good poor ok
DM Content NT/mixed NT/mixed  T/NT T/NT
Direct poor g00d(SD) poor good(SI)

NT: Non-thermal, T: Thermal



Grand Challenges for Direct Detection

= Detector development - Details in Detector Session
» Need massive low threshold detectors NRARAANL 2
» Large Directional Detectors to cut down background
= Confirm signal through a different target
» If LZ and XenonlT find signal, need Ge/Si/Ar to confirn
= Background Discrimination
» All experiments need continuing improvements el ],
= Background Reduction
» including Radon mitigation and surface screening
» Access to radiopure materials and assay resources
= Low energy calibration Calibration
» Robust NR calibration is difficult and needs support
= High synergy between 2 3 decay and DM detecto
» HEP+NP? HPGe Radiopurity, Shielding, electronics..



Grand Challenges for Indirect Detection

Pair-conversion telescopes:
More collecting area (bigger). Larger field-of-view (monolithic tech?)

Instrumental R&D will likely focus primarily on scaling existing
technologies for use in future instruments
Cost per channel, data volume and rate, and instrument infrastructure
Space-based instruments have the additional constraints (e.q. power)

Adapt existing technologies for scalable, low-cost, applications
Need seed funding from DOE to prove ideas to finally propose to NASA

Design of next-generation instruments for indirect DM
searches will focus on scalability issues such as:
Building a pair-telescope with 25 m?sr acceptance
Infilling CTA to better image the entire air-shower

Main room for improvement for IACTs:

Better y-hadron separation (more telescopes, greater infill)
25 CPAD Workshop, October 7, 2015



Grand Challenges for Axion Searches

Microwave Cavities:
High-Frequency, Large-Volume Tunable Systems with

high Q

RF Detectors: Quantum Limited (0.25 — 10 GHz)
SQUIDs & JPAs

Beyond several GHz standard quantum limit begins to
dominate
Employ Squeezed States and Eventually Single-
Photon-Counters

Large Magnets can increase axion conversion signal.



Grand Challenges for Collider DM Searches

= Many details in technology sessions, especially in
detectors and trigger/DAQ

= How to combine collider results with that from direct and

indirect searches. Some failures — mono-jet event
interpretations, EFT theory uses for low mediator masses



